P.R.GOVERNMENT COLLEGE (AUTONOMOUS), KAKINADA I B.SC. - MATHEMATICS - SEMESTER II (w.e.f. 2017-2018)

Course: SOLID GEOMETRY

Total Hrs. of Teaching-Learning: 90 @ 6 h / Week

Total Credits: 05

Objective:

To get awareness about the three dimensional geometry along with visualization.

• To be able to apply 3-D geometry for the construction.

Unit 1: The Plane

Equation of plane in terms of its intercepts on the axes, Equation of the plane through the given points, Length of the perpendicular from a given point to a given plane, Bisectors of angles between two planes, Combined equation of two planes, Orthogonal projection on a plane.

Unit 2: The Straight Line

(18 h)

Equation of a line; Angle between a line and a plane; the condition that a given line may lie in ρ_{N} , Γ_{L} a given plane, the condition that the given lines are coplanar, Number of arbitrary constants in the equations of straight line; sets of conditions which determine a line; The shortest distance Δ_{ac} . I between two lines, the length and equations of the line of shortest distance between two straight lines, length of the perpendicular from a given point to a given line.

Unit 3: The Sphere

(18h)

Equation of the sphere. Plane section of a sphere; Intersection of two spheres; Equation of a circle; Sphere through a given circle; Intersection of a sphere and a line; Tangent lines and tangent planes; plane of contact, Polar plane conjugate points; conjugate planes.

Unit 4: The Sphere and the Cone

(18h)

Angle of intersection of two spheres; condition for two spheres to be orthogonal; Radical Juz plane, Coaxial system of spheres; simplified form of the equation of two spheres.

Definition of a cone, vertex, guiding curve generators; Equation of the cone with a given vertex and guiding curve; Equation of cone with vertex at origin is homogeneous; Condition that thegeneral equation of the second degree should represent a cone.

Unit 5: The Cone

Enveloping cone of a sphere; Right Circular Cone; Conditions that a cone may have three mutually perpendicular generators; Intersection of a line and quadric cone; Tangent lines and tangent plane at a point; Condition that a plane may touch a cone; Reciprocal cones; Intersection of two cones with a common vertex.

Additional Inputs:

1. Intersection of three planes; Triangular prism.

2. The right circular cylinder.

Prescribed Book:

Scope as in "A text book of Mathematics for B.Sc. volume I" by V.Krishna Murthy & others, S.Chand and Co. .ltd.

ReferenceBooks:

- 1. Analytical Solid Geometry by Shanti Narayan and P.K.Mittal, published by S.Chand & Company Ltd. Seventh edition.
- 2. A text book of Analytical Geometry of Three Dimensions by P.K.Jain and Khaleel Ahmed, Wiley Eastern Ltd., 1999.
- 3. Course on Solid Geometry by N.P.Bali-Golden series publications.

BLUE PRINT FOR QUESTION PAPER PATTERN SEMESTER-II

Unit	TOPIC	V.S.A.Q	S.A.Q	E.Q	Marks allotted to the Unit
1	The Plane	, e - 1 4	1	2	22
2	The Right Line	1	1	2	22
3	The Sphere	1	1	1.5	14
4	The Sphere & The Cone	1	1	2	22
5	The Cone	1	1	1	14
TOTAL		5	5	8	94

V.S.A.Q = Very short answer questions (1 mark)

S.A.Q = Short answer questions (5 marks)

E.Q = Essay questions (8 marks)

Very short answer questions : $5 \times 1 = 05$ Short answer questions : $3 \times 5 = 15$ Essay questions : $5 \times 8 = 40$

Total Marks = 60

in a second

P.R.Government College (Autonomous), Kakinada I year B.Sc., Degree Examinations - II Semester Mathematics Course: Solid Geometry Paper II (Model Paper w.c.f. 2017 - 2018)

Time: 2Hrs 30 min

Max. Marks: 60

PART-I

Answer ALL the questions. Each question carries 1 mark.

 $5 \times 1M = 5 M$

- 1. Find the equation of the plane through the line of intersection of x 3y + 2z + 3 = 0, 3x y 2z 5 = 0 and the origin.
- 2. Find the equation of the line passing through (4,3,-7) and equally inclined to the axes.
- 3. Find the centre of the sphere $x^2 + y^2 + z^2 3x + 5y 4z 3 = 0$.
- 4. Find the polar plane of the point (0, -1, 1) with respect to the sphere $x^2 + y^2 + z^2 2x + 4y + 6z 11 = 0$.
- 5. Write the reciprocal cone of $9x^2 + 4y^2 7z^2 = 0$.

PART-II

Answer any THREE questions, each question carries 5 marks.

 $3 \times 5M = 15 M$

- 6. Find the equation of the plane through the point (-1,3,2) and perpendicular to the two planes x + 2y + 2z = 5 and 3x + 3y + 2z = 8.
- 7. Find the image of the point A(1,3,4) in the plane 2x y + z + 3 = 0.
- 8. Find the equation of the sphere through the origin and making intercepts a,b,c with the axes.
- 9. If r_1 and r_2 are the radii of the orthogonal spheres, then find the radius of the circle of their intersection.
- 10. Find the equation of the enveloping cone of the sphere $x^2 + y^2 + z^2 + 2x 2y = 2$, with its vertex at (1,1,1).

PART-III

Answer any \underline{FIVE} questions from the following by choosing at least \underline{TWO} from each section. Each question carries 8 marks. $5 \times 8M = 40M$

SECTION -A

- 11. Find the planes bisecting the angles between the angles between the planes 2x y + 2z + 3 = 0 and 3x 2y + 6z + 8 = 0. Point out which of the planes bisects the acute angle and which bisects the obtuse angle in which the origin lies.
- 12. Show that the equation $x^2 + 4y^2 + 9z^2 12yz 6zx + 4xy + 5x + 10y 15z + 6 = 0$ represents a pair of parallel planes and find the distance between them.
- 13. Prove that the lines $\frac{x-1}{2} = \frac{y-2}{3} = \frac{z-3}{4}$; $\frac{x-2}{3} = \frac{y-3}{4} = \frac{z-4}{5}$ are coplanar. Also find their point of intersection and the plane containing the lines.

14. Find the length and equations of shortest distance between the lines

d equations of shortest distance between the first
$$\frac{x-2}{2} = \frac{y-2}{3} = \frac{z-3}{4}$$
 and
$$\frac{x-2}{3} = \frac{y-4}{4} = \frac{z-5}{5}.$$

SECTION -B

- 15. Show that the four points (-8,5,2), (-5,2,2),(-7,6,6),(-4,3,6) are concyclic.
- 16. Find the equation of the sphere which touches the plane 3x + 2y z + 2 = 0 at (1, -2, 1)and cuts orthogonally the sphere $x^2 + y^2 + z^2 - 4x + 6y + 4 = 0$.
- 17. Prove that the plane ax + by + cz = 0 cuts the cone yz + zx + xy = 0 in a perpendicular lines if $\frac{1}{a} + \frac{1}{b} + \frac{1}{c} = 0$.
- 18. Find the equation to the right circles cone whose vertex in P(2, -3,5) axis PQ which makes equal angles with the axis and which passes through (1,-2,3).